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Abstract

A nonlinear, fully implicit solver for a 2D high-b (incompressible) Hall magnetohydrodynamics (HMHD) model is

proposed. The task in non-trivial because HMHD supports the whistler wave. This wave is dispersive (x � k2) and
therefore results in diffusion-like numerical stability limits for explicit time integration methods. For HMHD, implicit

approaches using time steps above the explicit numerical stability limits result in diagonally submissive Jacobian sys-

tems. Such systems are difficult to invert with iterative techniques. In this study, Jacobian-free Newton–Krylov iterative

methods are employed for a fully implicit, nonlinear integration, and a semi-implicit (SI) preconditioner strategy,

developed on the basis of a Schur complement analysis, is proposed. The SI preconditioner transforms the coupled

hyperbolic whistler system into a fourth-order, parabolic, diagonally dominant PDE, amenable to iterative techniques.

Efficiency and accuracy results are presented demonstrating that an efficient fully implicit implementation (i.e., faster

than explicit methods) is indeed possible without sacrificing numerical accuracy.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Hall magnetohydrodynamics (HMHD) treats ions and electrons as separate species, allowing relative
drifts between them. This is of importance in instances where ions become demagnetized in a thin plasma

boundary layer due to ion inertia or finite ion Larmor radius effects, but electrons remain magnetized. Ion

demagnetization results in the decoupling of the ion and electron flows within the boundary layer, and the

standard resistive magnetohydrodynamics (MHD) model (which treats ions and electrons as a single

species) breaks down.

Numerically, the HMHD formalism is extremely stiff due to the presence of dispersive waves, charac-

terized by dispersion relations of the form x � k2, with x is the frequency and k is the wavenumber. In

explicit integration methods, such dispersive waves impose Courant–Friedrichs–Lewy (CFL) time step
limits for numerical stability that grow quadratically with the mesh increment size. Since HMHD physics

results in the formation of extremely thin boundary layers that need to be resolved, it follows that
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extraordinary computing resources are required for acceptable explicit simulation turn-around times.

Further, if sufficiently long time scales are of interest, the question of error propagation in explicit com-

putations becomes important due to the large number of time steps (�108–109) required per simulation.

Implicit methods promise to alleviate these issues by decoupling the time step and mesh increment sizes.

However, the presence of dispersive waves inHMHDcomplicates the already difficult endeavor of developing

fully implicit solvers for coupled, nonlinear PDE systems. In fact, to the authors� knowledge, the only other
comparable effort for HMHD is Ref. [1], where a semi-implicit solver for Hall MHD is proposed. In fact, the

semi-implicit operator proposed there is very similar to one of the preconditioning flavors proposed in this
work. However, the semi-implicit solver proposed in [1] is implemented with important simplifications in the

magnetic field dependence of the semi-implicit operator to streamline its linear algebra treatment (in a similar

fashion as in Ref. [20]), and relies substantially on splitting and linearization. These simplifications should be

avoided to preserve accuracy with large implicit time steps, in view of the analysis and results presented in [2].

In this study, we propose a fully implicit, nonlinear algorithm for HMHD, based on the Newton–

Raphson method for nonlinear convergence, and on Krylov semi-iterative techniques for the required al-

gebraic inversions. A fully implicit formulation ensures linear numerical stability and preserves accuracy by

avoiding splitting and/or linearization (thus preserving the character of the continuum formulation in
discrete form except for discretization errors [2]). However, the question still remains about efficiency. The

latter depends fundamentally on the conditioning of the algebraic (Jacobian) systems involved. Jacobian

conditioning is poor for HMHD due to the disparate time scales involved (which results in equally disparate

eigenvalues) and the diagonally submissive nature of matrices stemming from hyperbolic PDEs (for implicit

time steps larger than the CFL limit). The latter aspect is particularly limiting for implicit formulations,

since it renders the matrices unsuitable for an iterative treatment using standard iterative techniques (which

is a fundamental aspect of the implementation of implicit solvers in multi-dimensional applications).

Jacobian-free Newton–Krylov (JFNK) iterative methods, however, are suitable for a fully implicit in-
tegration of such systems because they allow preconditioning to accelerate convergence. Preconditioning

effectively improves the condition number of the Jacobian system by using suitable approximations of the

Jacobian inverse. A key feature of preconditioning is that these approximations do not affect the quality of

the converged solution, but only the rate of convergence of the Krylov method. Here, we focus on physics-

based preconditioning, which employs semi-implicit techniques to reformulate diagonally submissive hy-

perbolic systems into diagonally dominant parabolic ones. This idea has successfully been employed in [3–5]

to deal with stiff hyperbolic systems. Specifically, Chac�oon et al. [3] successfully developed a physics-based

preconditioner to deal with the linear Alfv�een wave in resistive MHD. We will follow here a similar strategy
for the development of an efficient implicit solver for the whistler wave in HMHD.

Additionally, we will provide an important connection between the physics-based semi-implicit pre-

conditioning approach and a more general algebraic concept: the Schur complement [6]. Briefly, we will

show that the semi-implicit operator resulting from the parabolization of a hyperbolic system can be di-

rectly interpreted as a Schur complement. This connection generalizes the physics-based concept and

provides a solid framework to develop physics-based preconditioners for other stiff-wave applications.

The rest of the paper is organized as follows. Section 2 introduces the specific HMHD of interest. Section

3 discusses the implementation details of the JFNK solver employed. The physics-based preconditioner
strategy is derived in Section 4. Numerical results on efficiency and accuracy are presented in Section 5.

Finally, we conclude in Section 6.

2. Hall MHD model equations

In our study, we employ an incompressible, constant density 2D HMHDmodel in slab geometry, using a

streamfunction/vorticity formulation. This model is rigorously valid for cold ions (Ti � Te) in a large-b
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plasma (where b is the ratio of the kinetic pressure to the magnetic pressure). We use Alfv�eenic units, in
which lengths are normalized to L ¼ Ly , velocities to the Alfv�een speed vA ¼ Bp0=

ffiffiffiffiffiffiffiffiffi
q0l0

p
(with Bp0 is the

maximum in-plane magnetic field, q0 is the density, and l0 is the magnetic permeability), and time to the

Alfv�een time sA ¼ L=vA. Neglecting variations along the z-axis (oz ¼ 0), a 2D streamfunction/vorticity

formulation of HMHD reads:

r2U ¼ x; ð1Þ

ðot þ~vvp 	 r 
 gr2 þ mer4ÞW þ E0 ¼ di~BBp 	 rBz; ð2Þ

ðot þ~vvp 	 r 
 gr2 þ mer4ÞBz þ SBz ¼ ~BBp 	 rðvz 
 diJzÞ; ð3Þ

ðot þ~vvp 	 r 
 mr2Þvz þ Svz ¼ ~BBp 	 rBz; ð4Þ

ðot þ~vvp 	 r 
 mr2Þx þ Sx ¼ ~BBp 	 rJz; ð5Þ

where U is the in-plane ion velocity streamfunction (~vvp ¼~zz�rU), x is the out-of-plane vorticity

(x ¼~zz 	 r �~vv), W is the in-plane flux function (which gives ~BBp ¼~zz�rW), Jz ¼ r2W is the ion current in

the ignorable direction, and vz, Bz are the ion velocity and the magnetic field components in the ignorable

direction. Sources E0 (the applied electric field in the z-direction), Sx, SBz , and Svz can be included to ensure

that the initial condition is an equilibrium. The parameter di ¼ c=xpi is the ion skin depth (with xpi is the

ion plasma frequency and c is the speed of light), which quantifies the importance of Hall MHD effects:

MHD is recovered in the limit di ! 0. The transport parameters (the ion kinematic viscosity m, the resis-
tivity g, and the electron kinematic viscosity – otherwise known as hyperresistivity – me) are assumed
constant. A numerical value is used for me that ensures adequate damping of the whistler wave at the

shortest grid scales (and hence controls numerical noise buildup in nonlinear regimes). The derivation is in

Appendix A, and yields:

me ¼ 0:2divAh2; ð6Þ

where h ¼ ð 1
Dx2 þ 1

Dy2Þ

1=2

, and Dx, Dy are the grid spacings in the x and y-directions, respectively. It is

important to note that me is ‘‘grid-bound’’ (i.e., it varies with the mesh spacing h). This is a consequence of
the requirement that the whistler damping occur at the shortest grid scales. Since me / h2, the hyperresis-
tivity operator mer4 scales as h
2 when discretized, and its numerical stiffness is then comparable to that of a
second-order diffusion operator. This is in fact a desirable property for both implicit and explicit solvers,

since it avoids unnecessary strain on the solvers when using very fine meshes while still controlling the

numerical noise.

A linear analysis of Eqs. (1)–(5) using an equilibrium defined by a constant in-plane magnetic field, no in-
plane ion flow, zero perpendicular velocity and magnetic field, and no transport (g ¼ m ¼ me ¼ 0) yields the

following dispersion relation:

x2 ¼ v2Ak
2
k 1

(
þ d2i k

2

2
� dik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2i k

2

4

r )

with vA is the Alfv�een speed, k is the wavenumber, and kk ¼ ~BBp 	~kk=Bp. This dispersion relation has the

following limits:

1. dik � 1 (resistive MHD): then x2 � v2Ak
2
k , and the system decouples into two separate Alfv�een waves,

one propagated by the x–U–W equations and the other by the vz–Bz equations.
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2. dik � 1 (Hall MHD): in this case the two Alfv�een waves bifurcate into the whistler wave and the ion

cyclotron wave, as follows:

x ¼
vAkkdik ðWhistlerÞ;
kk
k xci ðIon cyclotronÞ:

�

The quadratic nature in k of the whistler wave dispersion relation is apparent from this result, whereas
the ion cyclotron wave effectively scales as Oðk0Þ.
The presence of the dispersive whistler wave introduces a very stringent CFL condition for explicit

numerical algorithms. The motivation of this work is to develop an efficient, fully implicit (h-scheme),

nonlinear algorithm that is able to step over the whistler normal mode time scale while preserving accuracy.

The system of equations (1)–(5) is discretized in a similar fashion to Ref. [3], using second-order finite

volumes in space, and a h-scheme in time, with h ¼ 1=2 (fully implicit, second-order Crank–Nicolson). The
domain chosen is a rectangle Lx � Ly in Cartesian geometry with periodic boundary conditions in the

x-direction and homogeneous Dirichlet in the y-direction in all quantities.

3. Jacobian-free Newton–Krylov solver

Once the HMHD equations are discretized in time and space, the next step is to find the new-time

solution~xxnþ1 ¼ f~UUnþ1; ~WWnþ1; Bz
!nþ1

; vz
!nþ1

; ~xxnþ1gT from the current-time solution~xxn by solving the nonlinear,
coupled system of equations resulting from the fully implicit discretization, and symbolized here by
~GGð~xxnþ1Þ ¼~00 (where ~GG ¼ f~GGU; ~GGW; ~GGBz ; ~GGvz ; ~GGxgT).

This is accomplished iteratively with the Newton–Raphson algorithm, which requires the solution of a
series of algebraic systems of the form:

Jkd~xxk ¼ 
~GGð~xxkÞ: ð7Þ

Here, k is the nonlinear iteration level, Jk ¼ ðo~GG=o~xxÞk is the Jacobian matrix,~xxk is the kth state vector, d~xxk is
the kth Newton update [from which the ðk þ 1Þth Newton state vector is obtained,~xxkþ1 ¼~xxk þ d~xxk], ~GGð~xxkÞ is
the vector of residuals. Nonlinear convergence is achieved when:

k~GGð~xxkÞk2 < �a þ �rk~GGð~xx0Þk2 ¼ �t; ð8Þ

where k 	 k2 is the ‘2-norm (Euclidean norm), �a ¼ N � 10
15 (with N the total number of mesh points) is an

absolute tolerance to avoid converging below roundoff, �r is the Newton relative convergence tolerance (set
to 10
4 in this work), and ~GGð~xx0Þ is the initial residual. Upon convergence, the solution at the new time step is

found as~xxnþ1 ¼~xxkþ1.
Each of these iterative steps requires inverting the Jacobian system in Eq. (7). Krylov semi-iterative

techniques [7] are ideally suited for this task, because they can be implemented Jacobian-free (i.e., the full

Jacobian in never formed nor stored) and can be preconditioned for efficiency. A Jacobian-free imple-
mentation exploits the feature that Krylov methods only require the product of the system matrix times a

Krylov vector ~vv, which is provided by the iterative algorithm, to proceed. In Newton�s method, the Ja-

cobian-vector product can be calculated using the directional (Gateaux) derivative, approximated here as:

Jk~vv �
~GGð~xxk þ �~vvÞ 
 ~GGð~xxkÞ

�
; ð9Þ

where � is small but finite (discussed later in this section). Thus, the evaluation of the Jacobian-vector

product only requires the function evaluation ~GGð~xxk þ �~vvÞ, and there is no need to form or store the Jacobian

matrix.
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Among the various Krylov methods available, GMRES (Generalized Minimal RESiduals) is selected

because it guarantees convergence with nonsymmetric, nonpositive definite systems [8] (the case here be-

cause of the hyperbolic nature of HMHD), and because it provides normalized Krylov vectors j~vvj ¼ 1, thus

bounding the error introduced in the difference approximation of Eq. (9) (whose leading error term is

proportional to �j~vvj2) [9]. However, GMRES can be memory intensive (storage increases linearly with the

number of GMRES iterations per Jacobian solve) and expensive (computational complexity of GMRES

increases with the square of the number of GMRES iterations per Jacobian solve). Restarted GMRES can

in principle deal with these limitations; however, it lacks a theory of convergence, and stalling is frequently
observed in real applications [10]. Here, we focus on minimizing the number of GMRES iterations per

Jacobian solve for efficiency, by: (1) using inexact Newton techniques [11], and (2) improving the condition

number of the Jacobian matrix by preconditioning the problem.

The inexact Newton method adjusts the GMRES convergence tolerance at every Newton iteration

according to the size of the Newton residual, as follows:

kJkd~xxk þ ~GGð~xxkÞk2 < fkk~GGð~xxkÞk2; ð10Þ

where fk is the inexact Newton parameter or forcing term. Thus, the convergence tolerance of GMRES is

loose when the state vector ~xxk is far from the nonlinear solution, but becomes increasingly tighter as ~xxk
approaches the solution. Superlinear convergence rate of the inexact Newton method is possible if the

sequence of fk is chosen properly [12]. Here, we employ the following prescription (similar to what is

proposed in Section 6.3 of [12]):

fAk ¼ c
k~GGð~xxkÞk2
k~GGð~xxk
1Þk2

 !a

;

fBk ¼ min½fmax;maxðfAk ; cf
a
k
1Þ�;

fk ¼ min fmax;max fBk ; c
�t

k~GGð~xxkÞk2

 !" #
;

with a ¼ 1:5, c ¼ 0:9, and fmax ¼ 0:5. The convergence tolerance �t is defined in Eq. (8). In this prescription,
the first step ensures superlinear convergence (for a > 1), the second avoids volatile decreases in fk, and the
last avoids oversolving in the last Newton iteration.

Preconditioning consists in operating on the system matrix Jk with an operator P
1
k (preconditioner) such

that JkP
1
k (right preconditioning) or P
1

k Jk (left preconditioning) is well-conditioned. In this study, we use

right preconditioning because the vector of residuals ~GG is not polluted by the preconditioner. This is

straightforward to see when considering the equivalent Jacobian system:

ðJkP
1
k ÞðPkd~xxkÞ ¼ 
~GGð~xxkÞ: ð11Þ

Thus, GMRES will solve:

ðJkP
1
k Þ~zz ¼ 
~GGð~xxkÞ; ð12Þ

and the Newton update d~xxk is found upon obtaining~zz from d~xxk ¼ P
1
k ~zz. Notice that the system in Eq. (11) is

equivalent to the original system for any nonsingular operator P
1
k . Thus, the choice of P
1

k does not affect
the accuracy of the final solution, but crucially determines the rate of convergence of GMRES, and hence

the efficiency of the algorithm.

To solve Eq. (12) using GMRES, it is required to compute the Jacobian-vector product ðJkP
1
k Þ~vvj (where

~vvj is the Krylov vector of the jth Krylov iteration) to proceed. This is implemented with two matrix-vector

products:
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1. Compute ~yy ¼ P
1
k ~vvj. This is the so-called preconditioning step. Often, P
1

k is not an exact inverse of

any particular matrix, but an approximate inverse – obtained, for instance, using operator splitting

and/or low-complexity MG methods – of the exact Jacobian, or even an approximate inverse of an

approximation of the Jacobian. The specifics of the formation of the preconditioner operator P
1
k

for this application are discussed in Section 4.

2. Compute Jk~yy using the Jacobian-free approximation: Jk~yy � f~GGð~xxk þ �~yyÞ 
 ~GGð~xxkÞg=�, where � is small
but finite. Newton convergence is insensitive to � within a 2–3 orders of magnitude window; � is cal-
culated here as:

� ¼ 10
5 1

 
þ k~xxkk2

k~yyk2

!
:

The first step determines the efficiency of the algorithm (and leaves room for exploration, since P
1
k is in

principle an arbitrary nonsingular operator), while the second step determines the accuracy of the solution

[according to the discretization of the nonlinear system ~GGð~xxnþ1Þ ¼~00]. In this particular JFNK implemen-

tation, we also use the preconditioner P
1
k to provide a good initial guess for the GMRES solver,

d~xx0 ¼ P
1
0 ½
~GGð~xx0Þ�.

To maximize efficiency, the preconditioning operator P
1
k should approximate the inverse of the Jaco-

bian Jk while being relatively inexpensive. Here, we propose physics-based methods, based on semi-implicit

techniques to deal with wave stiffness [3–5]. The next section describes in more detail the nature of the
approximations employed here to construct the physics-based preconditioner. We emphasize that these

approximations have no bearing on the accuracy of the Newton-converged solution (which is fully implicit

and nonlinear), but only on the convergence rate of GMRES in each Newton step.

4. ‘‘Physics-based’’ preconditioner

Implicit differencing ensures absolutely stable numerical descriptions, for any time step and level of mesh
refinement, by introducing dispersion in waves and by treating elliptic operators (such as diffusion) nonl-

ocally. However, some of the mechanisms that are sources of numerical instabilities in explicit methods

continue to manifest themselves in implicit schemes in the form of ill-conditioned algebraic systems, which

iterative techniques have difficulty in handling. (Direct solvers are in principle suitable to deal with poorly

conditioned matrices; however, they do not scale adequately for sparse systems in 2D and 3D [13,14].)

There are two sources of ill-conditioning in the system of MHD equations: elliptic operators and

hyperbolic couplings. The former manifests itself in a power scaling N a (with a > 1) of the computational

complexity of iterative solver techniques. Elliptic stiffness is dealt with here with multigrid precondi-
tioning (MG), which employs low-complexity multilevel solvers [15] to invert the elliptic operators ap-

proximately. The multilevel aspect of MG (which employs a ‘‘divide and conquer’’ approach by which the

different scales of the global solution are decoupled in multiple grids of varying mesh refinement) results,

as a solver, in an optimal OðNÞ scaling of the computational complexity [16], and, as a preconditioner, in
a number of Krylov iterations virtually independent of the problem size (see [3,15,17] and results in

Section 5).

Ill-conditioning from hyperbolic couplings manifests itself in a loss of diagonal dominance due to short-

wavelength harmonics when the implicit time step is larger than the explicit wave CFL limit (see [3] for an
in-depth explanation of this issue). It is possible, however, to reformulate the physical equations so that the

resulting algebraic systems are better conditioned. The basic idea is to produce a well-conditioned (diag-

onally-dominant) parabolic operator from an ill-conditioned hyperbolic system of equations [3]. The

procedure can be understood easily with a first-order hyperbolic linear system:
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otu ¼ oxv;

otv ¼ oxu:

Differencing implicitly in time (with backward Euler for simplicity), we have:

unþ1 ¼ un þ Dtoxvnþ1; ð13Þ

vnþ1 ¼ vn þ Dtoxunþ1: ð14Þ

It is now possible to substitute the second equation into the first to obtain the following parabolic

equation:

ðI 
 Dt2oxxÞunþ1 ¼ un þ Dtoxvn; ð15Þ

which is equivalent to the set of two discretized equations, but much better conditioned because the par-

abolic operator is diagonally dominant. A similar idea is behind the method of differential approximations

[18], and the semi-implicit solvers developed in the MHD context [1,19,20] (although there the semi-implicit

operator is obtained and implemented in an ad-hoc manner).

It is useful at this point, using this simple example, to establish an important connection between the
parabolic semi-implicit operator obtained above and the useful concept of the Schur complement. We start

by writing Eqs. (13) and (14) in matrix form:

I 
Dtox

Dtox I


 �
unþ1

vnþ1


 �
¼ un

vn


 �
:

The matrix can be factorized as follows:

I 
Dtox

Dtox I


 �
¼ I 
Dtox

0 I


 �
PSC 0

0 I


 �
I 0


Dtox I


 �
;

where PSC ¼ I 
 Dt2o2x is the so-called Schur complement. The connection between the semi-implicit op-
erator an the Schur complement is now obvious. The factorized matrix is trivial to invert (pre- and post-

triangular matrices are trivially invertible in an exact manner – they correspond to forward elimination and

backward substitution, respectively – and only the block diagonal matrix requires an iterative treatment),

and yields Eq. (15) as a result. The usefulness of this association for the present application will be dem-

onstrated shortly. We note at this point that the semi-implicit preconditioner proposed in [3] for the Alfv�een
wave in resistive MHD can also be formulated as a Schur complement [21]. Schur complement approaches

have also been shown to be very effective as preconditioners in other applications [22].

The goal here is to find a semi-implicit formulation for the HMHD equations that removes the stiffness
associated with the whistler wave in the preconditioning stage. Although the general guiding principle is the

same as in the simple example above, specifics of the HMHD model (such as the presence of advection and

diffusion) make this task difficult. In particular, due to the dispersive nature of the whistler wave, the

parabolic system obtained will be of fourth-order, thus requiring special approaches for its efficient in-

version. The next sections describe these issues further.

4.1. Approximate formulation of the HMHD system

For preconditioning purposes, instead of attempting to derive a semi-implicit formulation of the HMHD

system valid for arbitrary implicit times steps (which would require approximating the full formulation in

Eqs. (1)–(5)), we restrict ourselves to implicit time steps Dt that satisfy the ordering:

L. Chac�oon, D.A. Knoll / Journal of Computational Physics 188 (2003) 573–592 579



DtwCFL � DtKDtA; ð16Þ

where DtwCFL is the explicit CFL condition associated with the dispersive whistler wave, and DtA is the CFL

limit associated with the Alfv�een speed (for subAlfv�eenic flows) or the flow speed (for superAlfv�eenic flows).
Owing to the dispersive nature of the whistler wave, Eq. (16) implies that C1h2 � DtKC2h. While re-

stricting our preconditioner to the condition in Eq. (16) effectively limits the implicit time step for efficiency,

large CPU speedups over purely explicit approaches are nevertheless expected (and realized, see Section 5)

for sufficiently refined grids by virtue of the different scalings in h. In addition, Hall physics typically allows
fast dynamical processes with time scales comparable to the Alfv�een time scale in the system, and hence

implicit time steps of the order of DtA are not so limiting in practice.

The time step ordering in Eq. (16) is the first piece of physics insight that allows us to simplify the

HMHD system for the purpose of developing an effective preconditioner. The complete Jacobian matrix for

the HMHD system reads, in block symbolic form (with the algebraic system of equations ~GGð~xxÞ ¼~00 ordered
first by grid nodes and then by equations):

Jk ¼

DU 0 0 0 I
LU;W DW UBz;W 0 0

LU;Bz LW;Bz DBz Uvz;Bz 0

LU;vz LW;vz LBz;vz Dvz 0

LU;x LW;x 0 0 Dx

2
666664

3
777775: ð17Þ

For the ordering chosen in Eqs. (1)–(5), the Jacobian is almost a lower block triangular system, except
for three blocks (I , UBz;W, and Uvz;Bz), which correspond to wave couplings and are responsible for the wave

dispersion relation in Section 2. In the limit di ! 0, the system supports two Alfv�een waves, propagated by I ,
LU;W, and LW;x on the one hand, and Uvz;Bz and LBz;vz on the other. The time step ordering chosen earlier

allows us to neglect the upper-triangular blocks I and Uvz;Bz responsible for the Alfv�een waves. This renders

the following simplified Jacobian matrix:

Pk ¼

DU 0 0 0 0

LU;W DW UBz;W 0 0

LU;Bz LW;Bz DBz 0 0

LU;vz LW;vz LBz;vz Dvz 0

LU;x LW;x 0 0 Dx

2
666664

3
777775: ð18Þ

The inversion of this Jacobian is reduced to the inversion of three diagonal blocks DU, Dvz , and Dx, and

the 2� 2 diagonal block matrix,

DW UBz;W

LW;Bz DBz


 �
: ð19Þ

This block matrix is in fact the one responsible of the propagation of the whistler wave, and is amenable

to a Schur decomposition, yielding:

DW UBz;W

LW;Bz DBz


 �
¼ I 0

LW;BzD

1
W I


 �
DW 0

0 PBzSC


 �
I D
1

W UBz;W

0 I


 �
; ð20Þ

where PBzSC ¼ DBz 
 LW;BzD

1
W UW;Bz is the Schur complement. Thus, the inversion of Eq. (19) is reduced to the

inversion of the diagonal block DW and of the Schur complement PBzSC. The subscript Bz in the Schur

complement denotes that this decomposition is not unique, since we can also write:
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DW UBz;W

LW;Bz DBz


 �
¼ I UBz;WD


1
Bz

0 I


 �
PW
SC 0

0 DBz


 �
I 0

D
1
Bz
LW;Bz I


 �
; ð21Þ

where PW
SC ¼ DW 
 UW;BzD


1
Bz
LW;Bz . Which Schur complement is preferable is not obvious at this stage, and

requires specific knowledge of the physics terms involved. This is the goal of the next section.

4.2. Formulation of the semi-implicit preconditioner

The ultimate goal of this exercise is to develop an inexpensive, approximate Jacobian inverse. We have

already accomplished much along this line, since we have simplified the inversion of the whole Jacobian

into the inversion of a few diagonal blocks and a Schur complement. While the diagonal blocks (which

contain advection–diffusion terms) are relatively easy to invert using approximate multigrid (MG) tech-

niques (as in [3]), the Schur complements (semi-implicit operators) in their current form are not suitable for
a MG treatment yet, since the formulation of the Schur operator itself requires the inversion of DW (or DBz ).

At this point, it is useful to define the symbolic operators that play a role in the Schur decomposition.

These are:

LW;Bz ¼ h
n

 ~xx0 	 r þ di½ð~BBp0 	 rÞr2 
 ð~zz�rJz0Þ 	 r�

o
;

UW;Bz ¼ 
hdi~BBp0 	 r;

DW ¼ 1

Dt
þ h½~vve0 	 r 
 gr2 þ mer4�;

DBz ¼
1

Dt
þ h½~vvp0 	 r 
 gr2 þ mer4�;

where ~xx0 ¼ r�~vv0 is the ion vorticity,~vve0 ¼~vvp0 
 di~JJ0 is the electron velocity, and h ¼ 1=2 is the h-scheme
parameter for Crank–Nicolson. The first important simplification in the Schur complement operators is to

approximate D
1
W � Dt, D
1

Bz
� Dt (one could also keep other diagonal entries from upwinded advection and

diffusion, although this is not done here). This is consistent with the time step ordering in Eq. (16) (except
for the electron viscosity term), and yields:

PBzSC � DBz 
 DtLW;BzUW;Bz ;

PW
SC � DW 
 DtUW;BzLW;Bz :

Further, and also consistently with the time step ordering, we neglect the ~xx0 	 r flow term in LW;Bz to find:

PBzSC � DBz þ Dth2d2i ½ð~BBp0 	 rÞr2 
 ð~zz�rJz0Þ 	 r�ð~BBp0 	 rÞ;

PW
SC � DW þ Dth2d2i ð~BBp0 	 rÞ½ð~BBp0 	 rÞr2 
 ð~zz�rJz0Þ 	 r�:

These results show, in either case, the fourth-order nature of the whistler semi-implicit operator. These can

be simplified further by either approximating ð~BBp0 	 rÞr2 
 ð~zz�rJz0Þ 	 r � r2ð~BBp0 	 rÞ [3] or by ne-
glecting the ð~zz�rJz0Þ 	 r term (which does not contribute to the propagation of the whistler wave). With

these approximations, we have two possibilities for each Schur complement:

½ð~BBp0 	 rÞr2 
 ð~zz�rJz0Þ 	 r�ð~BBp0 	 rÞ � ð~BBp0 	 rÞr2ð~BBp0 	 rÞ
r2ð~BBp0 	 rÞ2

�
;

for PBzSC, and
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ð~BBp0 	 rÞ½ð~BBp0 	 rÞr2 
 ð~zz�rJz0Þ 	 r� � ð~BBp0 	 rÞr2ð~BBp0 	 rÞ
ð~BBp0 	 rÞ2r2

�
;

for PW
SC. A priori, we disregard the form r2ð~BBp0 	 rÞ2, because it violates a fundamental property of the

forcing terms in Eqs. (1)–(5), namely, that they have no average effect along magnetic field lines (becauseH
dl
B
~BB 	 r ¼ 0). The whistler semi-implicit operator r2ð~BBp0 	 rÞ2 does not satisfy this property, and, if used

in the preconditioner, would result in noise being fed in the null space of the forcing terms. Such noise can

only be filtered by the external GMRES solver, spoiling the efficiency of the algorithm.
The other two alternatives, however, do satisfy this property, and are both good candidates for the

whistler semi-implicit operator. At this point, we focus our discussion on the W Schur complement, since it

allows both suitable forms of the semi-implicit operator. The choice at this point is guided by implemen-

tation and performance issues. Here, we will consider both operators, since each has advantages and

disadvantages, and each excels over the other one depending on the problem at hand. The preconditioner

strategy based on PW
SC is straightforwardly obtained by unrolling the Schur decomposition in Eq. (21) in the

block inversion of the approximate Jacobian system, d~xx � P
1
k ½
~GGð~xxkÞ�, where Pk is defined in Eq. (18), and

is summarized as follows:

dU � D
1
U ð
GUÞ;

dW � PW
SC

� �
1h
 hd~vvp 	 rW0 þ hdið~BBp0 	 rÞD
1
W ½ 
 hd~vvp 	 rBz0 
 GBz � 
 GW

i
;

dBz � D
1
Bz

h

 hd~vvp 	 rBz0 
 hdi½ð~BBp0 	 rÞr2dW þ d~BBp 	 rJz0� þ hd~BBp 	 rvz0 
 GBz

i
;

dvz � D
1
vz

h

 hd~vvp 	 rvz0 þ hd~BBp 	 rBz0 þ h~BBp0 	 rdBz 
 Gvz

i
;

dx � D
1
x

h

 hd~vvp 	 rx0 þ hð~BBp0 	 rÞr2dW þ hd~BBp 	 rJz0 
 Gx

i
;

where d~vvp ¼~zz�rdU, d~BBp ¼~zz�rdW, and

DU ¼ r2;

Dvz ¼ Dx ¼ 1

Dt
þ h½~vvp0 	 r 
 mr2�:

The generalization of the operation of P
1
k on a generic Krylov vector (as required by the GMRES

algorithm) is straightforward. We stress that the inversion of the full Jacobian matrix in Eq. (17) has been

simplified to the formation of the right-hand side terms and the inversion of the diagonal blocks DU, DBz ,

Dvz , Dx, and the whistler semi-implicit operator (Schur complement) PW
SC. All these diagonal blocks are by

design parabolic or elliptic operators, and hence amenable to MG methods. The diagonal blocks Dvz and

Dx are inverted using approximate scalar MG techniques as described in [3]. This preconditioning strategy

will be effective for DtwCFL � DtKDtA (Eq. (16)).

Despite the tremendous simplification that the previous algorithm embodies, the issue of dealing with
several fourth-order operators is still unresolved. Specifically, as formulated, the preconditioner needs to

deal with the anisotropic fourth-order operator in the Schur complement plus the isotropic biharmonic

associated with the electron viscosity. The following sections deal with these and other implementation

issues.

4.2.1. Implementation issues of (~BBp0 	 »)»2(~BBp0 	 »)
This form of the whistler semi-implicit operator is positive definite and contains the most physics (be-

cause the ð~zz�rJz0Þ 	 r term has not been completely neglected). However, a MG treatment is challenging

because it cannot be formulated as two second-order coupled systems (see next section), and its strong
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anisotropy (due to the ~BBp0 	 r operators) has so far hindered the development of an effective smoother.

Furthermore, its discretization stencil requires, depending on the specifics, a minimum of 21 points, making

its sparse implementation cumbersome and expensive.

To avoid these issues, we opt to invert the Schur complement associated with this semi-implicit operator,

given by:

1

Dt



þ h~vve0 	 r 
 hgr2 þ hmer4 þ Dth2d2i ð~BBp0 	 rÞr2ð~BBp0 	 rÞ

�
dW ¼ rhsW ð22Þ

approximately by operator splitting, as follows:

1

Dt



þ Dth2d2i ð~BBp0 	 rÞr2ð~BBp0 	 rÞ

�
dW� ¼ rhsW;

1

Dt



þ hð~vve0 	 r 
 gr2Þ

�
dW�� ¼ dW�

Dt
;

1

Dt

�
þ hmer4

�
dWnþ1 ¼ dW��

Dt
:

The first stage is symmetric positive definite (SPD), and is approximately inverted using unprecondi-

tioned CG (Conjugate Gradient) to a relative tolerance of 10
3 (iterating further is useless due to the errors

introduced by the many approximations involved in deriving this algorithm). The second stage can be

effectively dealt with by approximate MG, in the same manner as in [3]. The final stage is dealt with a few

(about 20) passes of Jacobi; the rationale behind this choice is that the purpose of the electron viscosity
term is to smooth noise generated nonlinearly by the whistler terms, and the electron viscosity coefficient is

‘‘grid-bound’’ (Eq. (6)) and designed to act on the shortest grid scales. The inversion of the diagonal block

DBz (which also contains the electron viscosity term) is performed using the last two steps of the split al-

gorithm above. From now on, this preconditioning alternative will be identified by CGSI (CG semi-im-

plicit).

CGSI does not require forming any matrix for the fourth-order operators, since Jacobi can be imple-

mented matrix-light [3,15] and unpreconditioned CG can be implemented matrix-free. (A matrix-light

implementation requires one to form and store the main diagonal only, as opposed to a matrix-free im-
plementation, which does not store any element of the matrix.) This represents a substantial simplification

in the coding of the algorithm, and significant memory savings. We note in passing that the use of CG

inside the preconditioner stage requires using flexible GMRES [23] (FGMRES) on the outside. FGMRES

has higher memory requirements than GMRES, since two sets of Krylov vector subsets need to be stored,

but requires one less preconditioner execution per GMRES call. This saves CPU time when the precon-

ditioner represents a large fraction of the CPU time per time step, as is the case here.

While the simplicity of CGSI is appealing, the preconditioner will likely fail with large di (since the

coefficients of both fourth-order operators increase with di) and/or with very fine grids. Failure will occur
due to inefficiencies in the unpreconditioned CG step (which is not scalable, as the number of CG iterations

scale with some power of the number of unknowns – see [14] and results in Section 5) and to errors in the

splitting algorithm itself. CGSI is expected to work well for moderate di and moderately refined grids.

4.2.2. Implementation issues of (~BBp0 	 »)2»2

Contrary to CGSI, this whistler semi-implicit operator can be reformulated into two coupled second-

order systems. The Schur complement associated with this semi-implicit operator is given by:
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1

Dt



þ h~vve0 	 r 
 hgr2 þ hmer4 þ Dth2d2i ð~BBp0 	 rÞ2r2

�
dW ¼ rhsW; ð23Þ

which can be rewritten as:

1

Dt



þ h~vve0 	 r 
 hgr2

�
dW þ me

Dthd2i
r2



þ ð~BBp0 	 rÞ2

�
n ¼ rhsW;

Dth2d2i r2dW 
 n ¼ 0:

We note that me=Dtd2i � DtwCFL=Dt � h � 1 (using Eq. (16) and that, in Alfv�eenic units, vA ¼ 1), which shows

that the relative importance of the hyperresistivity term decreases with grid refinement (and so does the

numerical stiffness associated with this term). This coupled system of equations is suitable for coupled MG

with coupled Jacobi as a smoother, since all blocks are diagonally dominant (advection terms are upwinded
in the preconditioner [3]). The inversion of DBz is also performed using coupled MG, as follows:

1

Dt



þ h~vve0 	 r 
 hgr2

�
dW þr2n ¼ rhsW;

hmer2dW 
 n ¼ 0:

Accordingly, we identify this semi-implicit preconditioning alternative as MGSI (multigrid semi-implicit).

The discretization of the blocks is done using second-order finite volumes. The coupled MG routine is

implemented matrix-light, and only the diagonal is stored for smoothing purposes in a preconditioner setup
stage (the same diagonal is used in every GMRES iteration for a given Newton iteration). The Jacobi

underrelaxation parameter is set to 0.75 for optimal smoothing rates, and we employ 10 Jacobi iterations

per smoothing call. We employ 2 MG V-cycles per coupled MG call. Piecewise constant restriction is

employed, since it is consistent with the conservative formulation of the HMHD system. Second-order

spline interpolation is employed for the prolongation step.

Clearly, each MGSI call is more expensive than CGSI. However, contrary to CGSI, MGSI is scalable

and should be able to deal with very stiff systems with very refined meshes and/or large values of di.

5. Numerical results

The approximations involved in the derivation of the preconditioning strategies above affect the

convergence rate of GMRES (and hence the efficiency of the implicit solver), but not the accuracy of the

converged solution (which is determined by the discretization chosen: Crank–Nicolson in this instance).

Numerical tests of the accuracy and efficiency of the implicit algorithm are performed on a 2D rect-

angular domain Lx � Ly , discretized uniformly using finite volumes. Boundary conditions are periodic in x
and homogeneous Dirichlet in y for all quantities. Physically, Dirichlet boundary conditions imply

perfect conductor (W ¼ 0), impenetrable wall for ions (U ¼ 0) and for electrons (Bz ¼ 0), and no stress

(x ¼ 0).

Numerical experiments are performed on two different problems, aimed to test different features of the

Hall MHD solver. The first problem of choice is the flux-bundle coalescence (FBC) problem [24,25]. Flux

bundles are initialized with the following flux function:

W0ðx; yÞ ¼ Ck exp

"(

 ½ðx
 x1Þ2 þ ðy 
 y1Þ2�2

k4

#
þ exp

"

 ½ðx
 x2Þ2 þ ðy 
 y2Þ2�2

k4

#)
ð24Þ
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with x1 ¼ Lx=2þ 1:3k, x2 ¼ Lx=2
 1:3k, y1 ¼ y2 ¼ Ly=2, and C determined so that the maximum magnetic

field in the domain is normalized to unity. For FBC, we fix the following parameters: Lx ¼ 2, Ly ¼ 1,

k ¼ 0:3, g ¼ m ¼ 10
4. No perturbation is required to start the simulation, since Eq. (24) is not an equi-

librium. Eq. (24) is contoured in Fig. 1(a). This problem tests the HMHD preconditioner in the presence of

highly structured magnetic field configurations.

The second problem of interest is the Kelvin–Helmholtz/tearing problem (KHT) [26], defined by the
following equilibrium:

W0ðx; yÞ ¼ 
kW ln
coshfðy 
 ð1=2ÞÞ=kWg

coshð1=2kWÞ


 �
þ ðy 
 ð1=2ÞÞ4 
 ð1=16Þ

3kW cosh2ð1=2kWÞ
; ð25Þ

U0ðx; yÞ ¼ MA

(

 kU ln

coshfðy 
 ð1=2ÞÞ=kUg
coshð1=2kUÞ


 �
þ ðy 
 ð1=2ÞÞ4 
 ð1=16Þ

3kU cosh
2ð1=2kUÞ

)
ð26Þ

and x0ðx; yÞ ¼ r2U0ðx; yÞ, Bz;0 ¼ vz;0 ¼ 0. These initial conditions impose sheared, parallel magnetic

and ion fluid flow fields. Here, MA is the Alfv�een Mach number, and kW and kU are the gradient scale

lengths for the current and vorticity sheets, respectively. The correction to the natural logarithm in

Eqs. (25) and (26) is to ensure the equilibrium satisfies homogeneous Dirichlet boundary condi-

tions in y. For KHT, we fix the following parameters: kW ¼ kU ¼ k ¼ 0:2, Lx ¼ 4, Ly ¼ 1, MA ¼ 1:5,
and g ¼ m ¼ 10
4. KHT is an equilibrium, and the simulation is jump-started with a perturbation in

the vorticity, dx ¼ 10
5 sinðpyÞ cosðð2p=LxÞxÞ. Eq. (25) is contoured in Fig. 1(b). This problem tests
the performance of the HMHD solver in problems with strong, anisotropic magnetic fields and

flows.

Our focus will be on both the accuracy and efficiency of the HMHD implicit solver. The following

sections deal separately with each of these topics.

5.1. Efficiency

Unless otherwise specified, results of numerical tests in this section are averaged over five implicit time

steps. The explicit algorithm employed for comparison is the same as used in [3], but with the explicit CFL

limit defined as:

Fig. 1. Initial condition for the magnetic flux W in the (a) FBC problem and (b) KHT problem.
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DtwCFL ¼ 0:9min
vx;max
Dx

�"
þ vy;max

Dy
þ Bx;max

Dx



þ By;max

Dy

�
1

�
þ 2

di
h

��
1

; 2
maxðg; mÞ

h2

�
þ 8

me
h4

�
1
#
; ð27Þ

where ðvx; vyÞ are the velocity components, ðBx;ByÞ are the magnetic field components, and

h ¼ ð 1
Dx2 þ 1

Dy2Þ

1=2

. Explicit calculations are extended over the same time span as the corresponding implicit

calculation.

Tables 1 and 2 present results for both preconditioning strategies and both test problems with several

grid refinements and di ¼ 0:2. Implicit time steps Dt are chosen to satisfy the ordering in Eq. (16). Several
comments are in order from these tables:

1. Both CGSI and MGSI result in scalable solvers in terms of Newton iterations and GMRES

iterations per time step. However, in terms of CPU time, MGSI performs much better than

CGSI for the FBC problem, while CGSI outperforms MGSI for the KHT problem. Notice

the difference in the number of CG iterations per GMRES iteration (CG/GM) of CGSI be-

tween FBC and KHT: CG/GM is an order of magnitude larger in FBC. The reason can be

traced to the fact that, in KHT, the magnetic field is aligned with the coarsest grid direction

(since Bx � By � 0 and Dx � Dy for the geometry of interest), and hence the whistler semi-im-
plicit operator is much less stiff than in FBC, where the magnetic field is not aligned with the

grid.

Table 1

Efficiency results for the two preconditioning strategies using the FBC problem and di ¼ 0:2

Grid Dt Newton/Dt GM/Dt CG/GM CPU (s) CPUexp=CPU Dt=DtwCFL

CGSI

64� 64 0.02 4.0 1.2 47 12 3.8 74

128� 128 0.01 4.0 3.8 106 100 3.9 147

256� 256 0.005 4.0 3.8 232 650 5.4 294

MGSI

64� 64 0.02 3.0 0.8 – 14 3.3 74

128� 128 0.01 2.6 0.6 – 46 8.5 147

256� 256 0.005 2.0 0 – 123 28.0 294

In this and subsequent tables, Newton=Dt indicates the number of Newton iterations per time step, GM=Dt indicates the number of
GMRES iterations per time step, CG/GM indicates the number of unpreconditioned CG iterations per GMRES iteration, CPU is the

implicit CPU time, and CPUexp is the explicit CPU time.

Table 2

Efficiency results for the two preconditioning strategies using the KHT problem and di ¼ 0:2

Grid Dt Newton=Dt GM=Dt CG/GM CPU (s) CPUexp=CPU Dt=DtwCFL

CGSI

64� 64 0.02 3 0 4 5 4.2 64

128� 128 0.01 3 1.2 13 28 6 125

256� 256 0.005 2.8 1.4 24 130 10.5 250

MGSI

64� 64 0.02 3 0.2 – 12 1.8 64

128� 128 0.01 3.6 2.4 – 85 2.0 125

256� 256 0.005 3.6 2.8 – 367 3.7 250
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2. Large CPU speedups (CPUexp=CPU) are possible for fine meshes: up to a factor of �30 is reported for
the FBC problem, and �10 for the KHT problem. The difference in implicit vs. explicit performance

between FBC and KHT is due to a larger explicit CFL limit in KHT, again because the magnetic field

in KHT is aligned with the coarsest grid direction.
3. CGSI presents a power scaling of CG/GM due to the lack of preconditioning in the CG treatment of

the whistler semi-implicit operator. However, the power scaling is relatively weak: in these numerical

tests, CG/GM increases by a factor of 2 when refining the mesh by a factor of 2 in each dimension [i.e.,

it scales as N 1=2, where N is the total number of mesh points]. The fact that the coefficient of the semi-

implicit operator is proportional to Dt2 (as obtained when multiplying Eqs. (22) and (23) by Dt), and
that Dt2 � N
1 by Eq. (16), implies that the semi-implicit coefficient gets smaller under refinement, and

contributes to such a mild scaling of CG/GM with N .
4. In some instances, the average number of GMRES iterations per time step (GM/Dt) is less than unity.

This reflects the fact that the preconditioner provides an extremely good initial guess (recall that the

preconditioner is also employed to provide a good initial guess for GMRES – see Section 3) and the

inexact Newton stage converges without requiring a single GMRES iteration.

Similar conclusions can be extracted from results for di ¼ 0:4, shown in Tables 3 and 4. In this case, and
for the FBC problem, the performance of CGSI degrades with mesh refinement, whereas MGSI performs

comparably to the di ¼ 0:2 case. For the KHI problem, CGSI still outperforms MGSI in raw CPU time,

but the scaling of CGSI with grid refinement is showing signs of stalling while the scaling of MGSI is not

(i.e., MGSI remains scalable).
The effects of using time steps larger than suggested by the time step ordering in Eq. (16) on the efficiency

of the solver are presented in Table 5. The results are obtained for the FBC problem with di ¼ 0:2 and the

Table 3

Efficiency results for the two preconditioning strategies using the FBC problem and di ¼ 0:4

Grid Dt Newton=Dt GM=Dt CG/GM CPU (s) CPUexp=CPU Dt=DtwCFL

CGSI

64� 64 0.02 5.4 16 90 60 1.44 154

128� 128 0.01 5.2 15.4 211 416 3.4 294

256� 256 0.005 4.8 20 462 3930 1.6 588

MGSI

64� 64 0.02 4.0 4 – 27 3.1 154

128� 128 0.01 3.4 2.2 – 80 17.2 294

256� 256 0.005 3.0 1.2 – 248 26.0 588

Table 4

Efficiency results for the two preconditioning strategies using the KHT problem and di ¼ 0:4

Grid Dt Newton=Dt GM=Dt CG/GM CPU (s) CPUexp=CPU Dt=DtwCFL

CGSI

64� 64 0.02 3.0 0.2 14.8 6 5.8 128

128� 128 0.01 3.0 1.0 28.4 32 10.5 250

256� 256 0.005 2.8 3.0 70.7 250 10.0 500

MGSI

64� 64 0.02 3.2 1.4 – 16 2.1 128

128� 128 0.01 4.0 5.6 – 132 2.5 250

256� 256 0.005 4.0 3.8 – 447 5.6 500
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MGSI preconditioner, and show that increasing the time step above the prescribed limits does not im-

mediately degrade the solver efficiency, since the CPU speedup over the explicit solver remains essentially

constant. However, given a constant speedup, it is preferable to run at the time step limit DtA to enhance the

accuracy of the calculation.

5.2. Accuracy

The previous efficiency results show implicit time steps several hundred times larger than explicit
CFL limits. With such large time steps, accuracy might be an issue. As recently shown [2], the second-

order implicit time integration of multiple-time-scale systems (such as this) remains accurate as long as

the ‘‘dynamical’’ time scale of the problem sdyn is respected. The two problems selected previously

(FBC, KHT) have well-defined dynamical time scales (stemming from ideal or resistive instabilities),

well above any normal mode time scales supported by HMHD, and hence are suitable for implicit

integration.

Here, we focus on the FBC problem because of the ideal nature of the driving (coalescence) instability,

which results in faster dynamical time scales and thus is more prone to inaccuracies in the implicit solver.
We use the following figures of merit for accuracy: (1) the reconnection rate at the magnetic field X-point

(local diagnostic), defined as E ¼ otWjX , and (2) the ‘2-norm of the magnetic flux perturbation (global

diagnostic), lnðkdWk2Þ. In the geometry of Fig. 1, the X-point is located in the middle of the domain, right

where the two bundles overlap, and this position is fixed during the linear and moderately nonlinear phase

of the coalescence instability (eventually the two flux bundles merge due to the presence of resistivity and

electron viscosity, and the X-point transforms into an O-point). We note that the reconnection rate E is the

time derivative of a fundamental quantity W, and as such, it is very sensitive to potential inaccuracies

introduced by the integration algorithm.
We test accuracy of the implicit algorithm by comparing the implicit time histories of these figures of

merit with their explicit counterparts. Time histories are obtained from a numerical simulation of the FBC

problem with di ¼ 0:2 in a 128� 128 grid, running up to a simulation time of t ¼ 1sA. The results are

presented in Fig. 2, and show that the time histories of both figures of merit (local and global) for the

explicit and implicit algorithms agree exceedingly well. In addition, the comparison of contour plots of

selected quantities at t ¼ 0:5sA show no appreciable difference between the explicit and implicit results. This

is powerful evidence that the implicit code is indeed accurate despite the fact that the implicit time step for

this configuration is more than two orders of magnitude larger than the explicit CFL limit (Table 1). This is
consistent with the fact that the implicit time step respects the dynamical time scale of the problem, since

Dt=sdyn � 10
2.

Table 5

Effect of surpassing the implicit time step limit DtA on the efficiency of the solver. The FBC problem with di ¼ 0:2 and the MGSI

preconditioner are chosen for the study

Dt=DtA Newton=Dt GM=Dt CPU (s) CPUexp=CPU Dt=DtwCFL

128� 128

1 2.6 0.6 46 8.5 147

2 3.6 1.8 78 9.4 294

4 4.8 5.8 147 9.3 588

256� 256

1 2 0 123 28.0 294

2 2.8 0.8 214 30.0 588

4 4.2 3.8 460 26.5 1176
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6. Conclusions

An accurate and efficient fully implicit, nonlinear solver strategy for Hall MHD has been presented. The

solver is based on Jacobian-free Newton–Krylov methods, employing flexible GMRES [23] as the Krylov

solver and converging the nonlinear couplings with an inexact Newton approach. This work expands on the
work for resistive MHD in [3].

As is well-known, Krylov solvers require preconditioning for efficiency. A useful preconditioning

framework has been developed based on physics insight and a Schur complement approach. The con-

nection of this approach with the physics-based preconditioning concept has been pointed out, as well as its

Fig. 2. Comparison between implicit and explicit results to determine loss of accuracy in the implicit algorithm. Simulations are

performed using the FBC problem with di ¼ 0:2 on a 128� 128 grid up to a final time of t ¼ 1sA. Selected quantities include time

histories of local and global diagnostics (see text) and contour plots at 0:5sA. In the time-history plots, the solid line corresponds to the
implicit calculation, and the dashed line to the explicit calculation.
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relationship with previous work [1,3]. As a result, two different preconditioners have been proposed: one

based on unpreconditioned CG, and other based on coupled MG.

The efficiency of the solver with these preconditioners is compared using two different model problems:

the flux-bundle coalescence problem and the collisionless tearing mode problem with flow. Each model

problem tests the solver under very different configurations (structured vs. directed magnetic fields). The

results show that each preconditioner excels in different conditions. Generally, CPU speedups over an

explicit approach of an order of magnitude are common, and up to a factor of 30 in some instances.

Accuracy results indicate that these speedups are obtained without compromising accuracy despite the large
time steps employed (which in some instances approach 600 times the explicit CFL condition).

Acknowledgements

The authors acknowledge useful conversations with D.C. Barnes, J.M. Finn, and D. Keyes. This work

has been supported by the Los Alamos National Laboratory Directed Research and Development

Program. Los Alamos National Laboratory is operated by the US Department of Energy under Contract
W-7405-ENG-36.

Appendix A. Functional form of the electron viscosity

Ion viscosity and/or resistivity, in combination with the whistler wave, are not able to define a dissipation

length scale, since their corresponding time scales all scale as k2, with k is the wavenumber [27,28]. A

dissipation scale length for this wave at the shortest grid scales requires either electron viscosity or electron

inertia. The choice does not fundamentally affect the overall reconnection dynamics in the system. Electron

viscosity is chosen here. However, in practice, the coefficient me is not known a priori, and an ad-hoc def-
inition, based on the grid spacing, is necessary.

To derive the correct functional form of me, we start by isolating the terms in Eqs. (1)–(5) that are re-

sponsible for the propagation of the whistler wave. Linearized about a given magnetic field ~BB0, these are:

otdW þ mer4dW ¼ di~BB0 	 rdBz;

otdBz þ mer4dBz ¼ 
di~BB0 	 rdJ ;

where the ‘‘d’’ quantities mean perturbations about some given state, denoted by the subscript ‘‘0’’. We are

interested in the balance of the terms in these equations in a neighborhood around a rational surface
~BB0 	 r ¼ B0kk ¼ 0, where dissipation becomes important. Using standard Fourier analysis, we replace

ot � c and r � i~kk to find:

cdW þ mek4dW ¼ idikkB0dBz;

cdBz þ mek4dBz ¼ idik2kkB0dW;

Away from the rational surface, the diffusion term is negligible, and we find c � idiB0kkk, as expected (it is

the whistler wave dispersion relation with vA ¼ B0). At the rational surface, the inertia term c is balanced by
the diffusion term, yielding c � 
mek4. For the diffusion term to be able to damp the whistler wave, the

magnitude of these c should be comparable, yielding:

me �
diB0kk
k3

� divA
k2
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Setting k � 1=h, where h ¼ ð 1
Dx2 þ 1

Dy2Þ

1=2

and Dx, Dy are the grid spacings in the x and y directions,

respectively, we find:

me ¼ CdivAh2: ðA:1Þ

The coefficient is in practice set to C ¼ 0:2 to prevent that the electron viscosity term imposes a more
stringent explicit time step limit than the whistler wave.

We note at this point that Eq. (A.1) is of the same functional form as would be obtained by its explicit

form, me � h4=DtwCFL, with DtwCFL / h2=divA the explicit time step. In either case, we note that me scales as h2,
not as h4 as a naive choice of me � h4=Dt would dictate, where Dt is the implicit time step. Since h � 1, the

latter scaling would result in me decreasing too rapidly under grid refinement, and hence in insufficient

dissipation and in pollution of the simulation due to numerical noise.

References

[1] D.S. Harned, Z. Mikic, Accurate semi-implicit treatment of the Hall effect in magnetohydrodynamic computations, J. Comput.

Phys. 83 (1989) 1–15.

[2] D.A. Knoll, L. Chac�oon, L. Margolin, V.A. Mousseau, On balanced approximations for the time integration of multiple time scale

systems, J. Comput. Phys. 185 (2003) 583–611.

[3] L. Chac�oon, D.A. Knoll, J.M. Finn, Implicit, nonlinear reduced resistive MHD nonlinear solver, J. Comput. Phys. 178 (1) (2002)

15–36.

[4] V.A. Mousseau, D.A. Knoll, J.M. Reisner, An implicit nonlinearly consistent method for the two-dimensional shallow-water

equations with Coriolis force, Mon. Weather Rev. 130 (11) (2002) 2611–2625.

[5] D.A. Knoll, W.B. Vanderheyden, V.A. Mousseau, D.B. Kothe, On preconditioning Newton–Krylov methods in solidifying flow

applications, SIAM J. Sci. Comput. 23 (2) (2001) 381–397.

[6] G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., Johns Hopkins University Press, Baltimore, MD, 1996.

[7] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996.

[8] Y. Saad, M. Schultz, GMRES: A generalized minimal residual algorithm for solving non-symmetric linear systems, SIAM J. Sci.

Stat. Comput. 7 (1986) 856–869.

[9] P.R. McHugh, D.A. Knoll, Inexact Newton�s method solution to the incompressible Navier–Stokes and energy equations using

standard and matrix-free implementations, AIAA J. 32 (12) (1994) 2394–2400.

[10] D.A. Knoll, P.R. McHugh, Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow, SIAM J. Sci.

Comput. 19 (1998) 291–301.

[11] R. Dembo, S. Eisenstat, R. Steihaug, Inexact Newton methods, J. Numer. Anal. 19 (1982) 400.

[12] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 1995.

[13] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Chapman & Hall, London, 1989.

[14] L. Chac�oon, D.C. Barnes, D.A. Knoll, G.H. Miley, An implicit energy-conservative 2D Fokker–Planck algorithm: II-Jacobian-free

Newton–Krylov solver, J. Comput. Phys. 157 (2) (2000) 654–682.

[15] D.A. Knoll, G. Lapenta, J.U. Brackbill, A multilevel iterative field solver for implicit, kinetic, plasma simulation, J. Comput.

Phys. 149 (1999) 377–388.

[16] W.L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1987.

[17] D.A. Knoll, W.J. Rider, A multigrid preconditioned Newton–Krylov method, SIAM J. Sci. Comput. 21 (2) (1999) 691–710.

[18] E.J. Caramana, Derivation of implicit difference schemes by the method of differential approximation, J. Comput. Phys. 96 (2)

(1991) 484–493.

[19] D.S. Harned, W. Kerner, Semi-implicit method for three-dimensional compressible magnetohydrodynamic simulation, J.

Comput. Phys. 60 (1985) 62–75.

[20] D.S. Harned, D.D. Schnack, Semi-implicit method for long time scale magnetohydrodynamic computations in three dimensions,

J. Comput. Phys. 65 (1986) 57–70.

[21] M. Pernice, Private communication.

[22] P.N. Brown, C.S. Woodward, Preconditioning strategies for fully implicit radiation diffusion with material-energy transfer, SIAM

J. Sci. Comput. 23 (2) (2001) 499–516.

[23] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput. 14 (2) (1992) 461–469.

[24] D. Biskamp, E. Schwarz, J.F. Drake, Ion-controlled collisionless magnetic reconnection, Phys. Rev. Lett. 75 (21) (1995) 3850–

3853.

L. Chac�oon, D.A. Knoll / Journal of Computational Physics 188 (2003) 573–592 591



[25] D. Biskamp, E. Schwarz, J.F. Drake, Two-fluid theory of collisionless magnetic reconnection, Phys. Plasmas 4 (4) (1997) 1002–

1009.

[26] L. Chac�oon, D.A. Knoll, J.M. Finn, Hall MHD effects in the 2-D Kelvin–Helmholtz/tearing instability, Phys. Lett. A 308 (2–3)

(2003) 187–197.

[27] J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M.M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto,

P.L. Pritchett, Geospace Environment Modeling (GEM) magnetic reconnection challenge, J. Geophys. Res. 106 (A3) (2001) 3715–

3719.

[28] J. Birn, M. Hesse, Geospace Environment Modeling (GEM) magnetic reconnection challenge: Resistive tearing, anisotropic

pressure and Hall effects, J. Geophys. Res. 106 (A3) (2001) 3737–3750.

592 L. Chac�oon, D.A. Knoll / Journal of Computational Physics 188 (2003) 573–592


	A 2D high-beta Hall MHD implicit nonlinear solver
	Introduction
	Hall MHD model equations
	Jacobian-free Newton-Krylov solver
	``Physics-based'' preconditioner
	Approximate formulation of the HMHD system
	Formulation of the semi-implicit preconditioner
	Implementation issues of (Brarrp0&middot;&nabla;)&nabla;2(Brarrp0&middot;&nabla;)
	Implementation issues of (Brarrp0&middot;&nabla;)2&nabla;2


	Numerical results
	Efficiency
	Accuracy

	Conclusions
	Acknowledgements
	Functional form of the electron viscosity
	References


